Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Electroless coating brings the advantage of providing films on the complex geometry of additively manufactured components. However, there is a knowledge gap about the impact of AM part surface and postprocessing parameters on the quality of electroless coating. This study explores the application of three solution-based surface finishing techniques on the microstructure and surface hardness of additively manufactured stainless steel components coated with electroless nickel films. Given that AM techniques for metal parts often yield surfaces with inherently rough textures and differences in properties along the different planes, we investigated their relationship with nickel coating. To mitigate the impact of surface irregularities on electroless nickel coating quality, this research evaluated the effectiveness of chemical polishing (CP) and Electropolishing (EP) as post-processing treatments for AM stainless steel. Characterization of the treated samples was conducted using the analytical Digital Microscope, Scanning Electron Microscope (SEM), and scratch tester. Additionally, the study incorporated an instant segmentation machine learning algorithm to overcome image analysis challenges. The findings indicate that EP and CP significantly improve surface smoothness, decreasing the arithmetical mean height (Ra) by as much as 4 µm and 10 µm, respectively. Furthermore, the nickel-coated AM samples demonstrated an enhancement in scratch resistance, exhibiting up to a two-fold increase in surface hardness compared to their as-built counterparts. Taguchi design of the experiment was applied to investigate the effect of process parameters. This study provides insights for developing improved surface quality and acquiring new properties via the coating process to make AM parts suitable for challenging environments and novel applications.more » « less
-
Abstract The current study investigates electroless nickel plating and surface finishing techniques such as ChemPolishing (CP) and ElectroPolishing (EP) for postprocessing on additively manufactured stainless-steel samples. Existing additive manufacturing (AM) technologies generate metal components with a rough surface that typically exhibit fatigue characteristics, resulting in component failure and undesirable friction coefficients on the printed part. Small cracks formed in rough surfaces at high surface roughness regions act as a stress raiser or crack nucleation site. As a result, the direct use of as-produced parts is limited, and smoothening the Surface presents a challenge. Previous research has shown that CP ChemPolishing has a significant advantage in producing uniform, smooth surfaces regardless of size or part geometry. EP Electropolishing has a high material removal rate and an excellent surface finishing capability. Electropolishing, on the other hand, has some limitations in terms of uniformity and repeatability. On additively manufactured stainless-steel samples, electroless nickel deposition has a higher plating potential. Nickel has excellent wear resistance, and nickel-plated samples are more robust as scratch resistant than not plated samples when tested for scratch resistance. This research uses medium-phosphorus (6–9% P) and high-phosphorus (10–13% P). The L9 Taguchi design of experiments (DOE) was used to optimize the electroless nickel deposition experiments. The mechanical properties of as-built and nickel-coated additive manufacturing (AM) samples were investigated using a standard 5 N scratch test and the adhesion test ASTM B-733 thermal shock method. The KEYENCE Digital Microscope VHX-7000 was used to examine the pre- and post-processed surfaces of the AM parts. The complete scratch and Design of Experiment (DOE) analysis was performed using the Qualitek-4 software. This work is in progress concerning testing the optimum conditions, completing measurements, and analyzing the results.more » « less
-
Abstract This paper addresses the design procedures and simulation results from the mechatronic model of the rehabilitation equipment, which can improve the functionality and precision of the ambulatory gait training system. The distinguishing feature of mechatronic systems is the achievement of system functionality through intensive integration. The paper demonstrates how the mechatronic design modeling has helped improve the design and performance of the new rehabilitation equipment built by the authors and is known as Navigaitor. The Navigaitor is designed to aid the patients who need to improve their balance and walk. The mechatronics aspects allow a better understanding of the dynamic behavior and interactions of the components. Depending on the severity of the patient’s injury (stroke survivor, Parkinson, etc.), the oscillatory motion can range from uniform to non-uniform. The motion needs to be converted from the oscillatory sinusoidal motion of the patient into linear motion that the system can follow the patient with minimum lag and maximum stability. The data acquired during the training stage showing a different rate of recovery and response assists the system designers and thereby provides input to fine-tune the system and upgrade the control requirements.more » « less
An official website of the United States government
